1,215 research outputs found

    A glance at imaging bladder cancer.

    Get PDF
    Purpose: Early and accurate diagnosis of Bladder cancer (BCa) will contribute extensively to the management of the disease. The purpose of this review was to briefly describe the conventional imaging methods and other novel imaging modalities used for early detection of BCa and outline their pros and cons. Methods: Literature search was performed on Pubmed, PMC, and Google scholar for the period of January 2014 to February 2018 and using such words as bladder cancer, bladder tumor, bladder cancer detection, diagnosis and imaging . Results: A total of 81 published papers were retrieved and are included in the review. For patients with hematuria and suspected of BCa, cystoscopy and CT are most commonly recommended. Ultrasonography, MRI, PET/CT using 18F-FDG or 11C-choline and recently PET/MRI using 18F-FDG also play a prominent role in detection of BCa. Conclusion: For initial diagnosis of BCa, cystoscopy is generally performed. However, cystoscopy can not accurately detect carcinoma insitu (CIS) and can not distinguish benign masses from malignant lesions. CT is used in two modes, CT and computed tomographic urography (CTU), both for dignosis and staging of BCa. However, they cannot differentiate T1 and T2 BCa. MRI is performed to diagnose invasive BCa and can differentiate muscle invasive bladder carcinoma (MIBC) from non-muscle invasive bladder carcinoma (NMIBC). However, CT and MRI have low sensitivity for nodal staging. For nodal staging PET/CT is preferred. PET/MRI provides better differentiation of normal and pathologic structures as compared with PET/CT. Nonetheless none of the approaches can address all issues related for the management of BCa. Novel imaging methods that target specific biomarkers, image BCa early and accurately, and stage the disease are warranted

    Genomic biomarkers for molecular imaging: predicting the future.

    Get PDF
    Over the past few decades, great strides have been made in anatomical imaging of disease that has led to their diagnosis with minimal invasion. Despite these advances, diseases such as cancer continue to take one human life every minute in the United States. Complimentary approaches that pertain directly to the genesis of the disease might contribute to its early diagnosis and subsequent management. In cancer, an array of molecular abnormalities leading to the modulations in expression of key proteins important in the cellular signaling pathways and cell proliferation has been identified. These specific disease fingerprints, biomarkers, are overexpressed on malignant cell surfaces or within the cytoplasm, and they provide unique targets that are promising for improving cancer diagnosis and therapy. We and others have designed, synthesized, and evaluated some novel probes specific for those oncogenes and oncogene product biomarkers for PET and SPECT molecular imaging of certain types of cancers. This article briefly describes this approach and gives specific examples that depict the ability of molecular imaging to detect occult lesions not detectable by current scintigraphic approaches. The article also outlines a few examples predicting other possible applications of targeting such specific probes not yet used

    Evaluation of a PACAP Peptide Analogue Labeled with (68)Ga Using Two Different Chelating Agents.

    Get PDF
    OBJECTIVE: The authors have conjugated chelating agents (DOTA and NODAGA) with a peptide (pituitary adenylate cyclase-activating peptide [PACAP] analogue) that has a high affinity for VPAC1 receptors expressed on cancer cells. To determine a suitable chelating agent for labeling with (68)Ga, they have compared the labeling kinetics and stability of these peptide conjugates. METHODS: For labeling, (68)GaCl3 was eluted in 0.1 M HCl from a [(68)Ge-(68)Ga] generator. The influences of peptide concentration, pH, and temperature on the radiolabeling efficiency were studied. The stability was evaluated in saline, human serum, DTPA, transferrin, and metallic ions (FeCl3, CaCl2, and ZnCl2). Cell binding assay was performed using human breast cancer cells (T47D). Tissue biodistribution was studied in normal athymic nude mice. RESULTS: Optimal radiolabeling (\u3e95.0%) of the DOTA-peptide conjugates required a higher (50°C-90°C) temperature and 10 minutes of incubation at pH 2-5. The NODAGA-peptide conjugate needed incubation only at 25°C for 10 minutes. Both radiocomplexes were stable in saline, serum, as well as against transchelation and transmetallation. Cell binding at 37°C for 15 minutes of incubation with (68)Ga-NODAGA-peptide was 34.0% compared to 24.5% for (68)Ga-DOTA-peptide. Tissue biodistribution at 1 hour postinjection of both (68)Ga-labeled peptide conjugates showed clearance through the kidneys. CONCLUSIONS: NODAGA-peptide showed more convenient radiolabeling features than that of DOTA-peptide

    Theragnostic Radionuclide Pairs for Prostate Cancer Management

    Get PDF
    Prostate cancer (PCa) is one of the preeminent causes of mortality in men worldwide. Theragnostic, a combination of therapy and diagnostic, using radionuclide pairs to diagnose and treat disease, has been shown to be a promising approach for combating PCa. In PCa patients, bone is one of the most common sites of metastases, and about 90% of patients develop bone metastases. This review focuses on (i) clinically translated theragnostic radionuclide pairs for the management of PCa, (ii) radionuclide therapy of bone metastases in PCa, and (iii) a special emphasis on emerging theragnostic radionuclide pair, Copper-64/Copper-67 (64Cu/67Cu) for managing the disease

    In vivo investigation of the tissue response to commercial Teflon insulin infusion sets in large swine for 14 days: the effect of angle of insertion on tissue histology and insulin spread within the subcutaneous tissue.

    Get PDF
    Objective: This study investigated the effects of the inflammatory tissue response (ITR) to an insulin infusion set (IIS) on insulin bolus spread over wear time, as well as the effect of cannula insertion angle on the ITR, bolus shape, and pump tubing pressure. Research design and methods: Angled or straight IISs were inserted every other day for 14 days into the subcutaneous tissue of 11 swine and insulin was delivered continuously. Prior to euthanasia, a 70 µL bolus of insulin/X-ray contrast agent was infused while recording a pressure profile (peak tubing pressure, pmax; area under the pressure curve, AUC), followed by the excision of the tissue-catheter specimen. Bolus surface area (SA) and volume (V) were assessed via micro-CT. Tissue was stained to analyze total area of inflammation (TAI) and inflammatory layer thickness (ILT) surrounding the cannula. Results: A bolus delivered through an angled IIS had a larger mean SA than a bolus delivered through a straight cannula (314.0±84.2 mm2 vs 229.0±99.7 mm2, p\u3c0.001) and a larger volume (198.7±66.9 mm3 vs 145.0±65.9 mm3, p=0.001). Both decreased significantly over wear time, independent of angle. There was a significant difference in TAI (angled, 9.1±4.0 mm2 vs straight, 14.3±8.6 mm2, p\u3c0.001) and ILT (angled, 0.7±0.4 vs straight, 1.2±0.7 mm, p\u3c0.001). pmax (p=0.005) and AUC (p=0.014) were lower using angled IIS. As ILT increased, pmax increased, while SA and V decreased. Conclusions: The progression of the ITR directly affected bolus shape and tubing pressure. Although straight insertion is clinically preferred, our data suggest that an angled IIS elicits lower grades of ITR and delivers a bolus with lower tubing pressure and greater SA and V. The subcutaneous environment plays a crucial role in IIS longevity, and the insertion angle needs to be considered in future IIS designs and clinical trials

    Consistent Surgeon Evaluations of Three-Dimensional Rendering of PET/CT Scans of the Abdomen of a Patient with a Ductal Pancreatic Mass.

    Get PDF
    Two-dimensional (2D) positron emission tomography (PET) and computed tomography (CT) are used for diagnosis and evaluation of cancer patients, requiring surgeons to look through multiple planar images to comprehend the tumor and surrounding tissues. We hypothesized that experienced surgeons would consistently evaluate three-dimensional (3D) presentation of CT images overlaid with PET images when preparing for a procedure. We recruited six Jefferson surgeons to evaluate the accuracy, usefulness, and applicability of 3D renderings of the organs surrounding a malignant pancreas prior to surgery. PET/CT and contrast-enhanced CT abdominal scans of a patient with a ductal pancreatic mass were segmented into 3D surface renderings, followed by co-registration. Version A used only the PET/CT image, while version B used the contrast-enhanced CT scans co-registered with the PET images. The six surgeons answered 15 questions covering a) the ease of use and accuracy of models, b) how these models, with/without PET, changed their understanding of the tumor, and c) what are the best applications of the 3D visualization, on a scale of 1 to 5. The six evaluations revealed a statistically significant improvement from version A (score 3.6±0.5) to version B (score 4.4±0.4). A paired-samples t-test yielded t(14) = -8.964,

    Imaging spontaneous MMTVneu transgenic murine mammary tumors: targeting metabolic activity versus genetic products.

    Get PDF
    INTRODUCTION: Despite the great strides made in imaging breast cancer (BC) in humans, the current imaging modalities miss up to 30% of BC, do not distinguish malignant lesions from benign ones, and require histologic examinations for which invasive biopsy must be performed. Annually in the United States, approximately 5.6 million biopsies find benign lesions. More than 50% of human BCs overexpress cyclin D1, and all BCs exhibit VPAC1 oncogene products. Together, these gene products may provide an excellent biomarker for the early and accurate detection of BC. We have evaluated 4 biologically active peptide analogs that have high affinity for VPAC1. The transgenic MMTVneu mice spontaneously develop BC and metastatic lesions that overexpress cyclin D1 and VPAC1 biomarkers. The MMTVneu mouse, therefore, provides an excellent animal model that mimics the pathogenesis of human BC. The objective of this investigation was to determine the ability of 1 of the peptide analogs, (64)Cu-TP3805, to detect BC in MMTVneu mice using (18)F-FDG as a gold standard. METHODS: The transgenic MMTVneu mouse colony was maintained. Offspring were screened for transgenic status by reverse transcriptase polymerase chain reaction (RT-PCR). Nine mice with visible, palpable, or unknown metastatic lesions were entered into the protocol. (18)F-FDG (6,475 +/- 1,628 kBq [175 +/- 44 microCi]) PET served as a control, followed by a CT scan and 24-48 h later by PET with (64)Cu-TP3805 (4,588 +/- 962 kBq [124 +/- 26 microCi]). RT-PCR on excised tumors determined VPAC1 expression, and histology ascertained the pathology. RESULTS: Ten tumors were detected by PET. Four tumors were detected both by (18)F-FDG and by (64)Cu-TP3805. Additionally, 4 tumors were imaged with (64)Cu-TP3805 only. These 8 tumors overexpressed VPAC1 receptors and were malignant by histology. The 2 remaining tumors were visualized with (18)F-FDG only. These tumors did not express the VPAC1 oncogene product and had benign histology. The standard uptake value ranged from 3.1 to 18.3 for (64)Cu-TP3805 and 0.9 to 1.4 for (18)F-FDG. CONCLUSION: (64)Cu-TP3805 identified all malignant lesions unequivocally that overexpressed the VPAC1 oncogene surface product. The 2 benign tumors that did not express the VPAC1 receptor were not imaged. (64)Cu-TP3805 promises to have the potential for the early and accurate imaging of primary and metastatic BC

    Targeting apoptosis for optical imaging of infection

    Get PDF
    PURPOSE: Infection is ubiquitous and a major cause of morbidity and mortality. The most reliable method for localizing infection requires radiolabeling autologous white blood cells ex vivo. A compound that can be injected directly into a patient and can selectively image infectious foci will eliminate the drawbacks. The resolution of infection is associated with neutrophil apoptosis and necrosis presenting phosphatidylserine (PS) on the neutrophil outer leaflet. Targeting PS with intravenous administration of a PS-specific, near-infrared (NIR) fluorophore will permit localization of infectious foci by optical imaging. METHODS: Bacterial infection and sterile inflammation were induced in separate groups (n = 5) of mice. PS was targeted with a NIR fluorophore, PSVue(®)794 (2.7 pmol). Imaging was performed (ex = 730 nm, em = 830 nm) using Kodak Multispectral FX-Pro system. The contralateral normal thigh served as an individualized control. Confocal microscopy of normal and apoptotic neutrophils and bacteria confirmed PS specificity. RESULTS: Lesions, with a 10-s image acquisition, were unequivocally visible at 5 min post-injection. At 3 h post-injection, the lesion to background intensity ratios in the foci of infection (6.6 ± 0.2) were greater than those in inflammation (3.2 ± 0.5). Image fusions confirmed anatomical locations of the lesions. Confocal microscopy determined the fluorophore specificity for PS. CONCLUSIONS: Targeting PS presented on the outer leaflet of apoptotic or necrotic neutrophils as well as gram-positive microorganism with PS-specific NIR fluorophore provides a sensitive means of imaging infection. Literature indicates that NIR fluorophores can be detected 7-14 cm deep in tissue. This observation together with the excellent results and the continued development of versatile imaging devices could make optical imaging a simple, specific, and rapid modality for imaging infection

    VEGF Trap In Combination With Radiotherapy Improves Tumor Control In U87 Glioblastoma

    Get PDF
    Purpose To determine the effect of vascular endothelial growth factor VEGF Trap (Regeneron Pharmaceuticals, Tarrytown, NY), a humanized soluble vascular endothelial growth factor (VEGF) receptor protein, and radiation (RT) on tumor growth in U87 glioblastoma xenografts in nude mice. Methods and Materials U87 cell suspensions were implanted subcutaneously into hind limbs of nude mice. VEGF Trap (2.5–25 mg/kg) was administered every 3 days for 3 weeks alone or in combination with a single dose of 10 Gy or fractionated RT (3 x 5 Gy). In addition, three scheduling protocols for VEGF Trap plus fractionated RT were examined. Results Improved tumor control was seen when RT (either single dose or fractionated doses) was combined with the lowest dose of VEGF Trap (2.5 mg/kg). Scheduling did not significantly affect the efficacy of combined therapy. Although high-dose VEGF Trap (10 mg/kg or 25 mg/kg) significantly reduced tumor growth over that of RT alone, there was no additional benefit to combining high-dose VEGF Trap with RT. Conclusions Vascular endothelial growth factor Trap plus radiation is clearly better than radiation alone in a U87 subcutaneous xenograft model. Although high doses of VEGF Trap alone are highly efficacious, it is unclear whether such high doses can be used clinically without incurring normal tissue toxicities. Thus, information on lower doses of VEGF Trap and ionizing radiation is of clinical relevance. Int. J. Radiation Oncol. Biol. Physics, Volume 67, Issue 5, pages 1526-1537, 2007
    • …
    corecore